Gambar3.2 Ground Water Tank 34 Gambar 3.3 Denah Konektor 38 Gambar 3.4 Denah Rencana Atap 39 Gambar 3.5 Bar Cutter 40 Gambar 3.6 Gerinda Pemotong 40 Gambar 3.7 Bar Bender 41 Gambar 3.8 Jack Hammer 42 Gambar 3.9 Theodolit 42 Gambar 3.10 Waterpass 43 Gambar 3.11 Jenis Scaffolding 44 Gambar 3.12 Bucket Beton 44 Gambar 3.13 Concrete Vibrator 45 Depending upon the location of the tank the tanks can be named as overhead, on ground or underground. The tanks can be made in different shapes usually circular and rectangular shapes are mostly used. The tanks can be made of RCC or even of steel. The overhead tanks are usually elevated from the roof top through column. In the other hand the underground tanks are rested on the foundation. Different types of tanks and their design procedure is discussed in subsequent portion if this chapter. The water tanks in this chapter are designed on the basis of no crack theory. The concrete used are made impervious. Basing on the location of the tank in a building s tanks can be classified into three categories. Those are • Underground tanks • Tank resting on grounds • Overhead tanks In most cases the underground and on ground tanks are circular or rectangular is shape but the shape of the overhead tanks are influenced by the aesthetical view of the surroundings and as well as the design of the construction. Steel tanks are also used specially in railway yards. Basing on the shape the tanks can be circular, rectangular, square, polygonal, spherical and conical. A special type of tank named Intze tank is used for storing large amount of water for an area. The overhead tanks are supported by the column which acts as stages. This column can be braced for increasing strength and as well as to improve the aesthetic views. One of the vital considerations for design of tanks is that the structure has adequate resistance to cracking and has adequate strength. For achieving these following assumptions are made • Concrete is capable of resisting limited tensile stresses the full section of concrete including cover and reinforcement is taken into account in this assumption. • To guard against structural failure in strength calculation the tensile strength of concrete is ignored. • Reduced values of permissible stresses in steel are adopted in steel are adopted in design. If the tank is resting directly over ground, floor may be constructed of concrete with nominal percentage of reinforcement provided that it is certain that the ground will carry the load without appreciable subsidence  in any part and that the concrete floor is cast in panels with sides not more than with contraction or expansion joints between. In such cases a screed or concrete layer less than 75mm thick shall first be placed on the ground and covered with a sliding layer of bitumen paper or other suitable material to destroy the bond between the screed and floor concrete. In normal circumstances the screed layer shall be of grade not weaker than M 10,where injurious soils or aggressive water are expected, the screed layer shall be of grade not weaker than M 15 and if necessary a sulphate resisting or other special cement should be used. Detail Penulis Penerbit Sipilpedia Bahasa Arabic Durasi Format MP4 Ukuran  Mb DOWNLOAD Konten berikutnya khusus bagi buyer yang telah membeli Premium Membership Daftar disini Untukinjeksi daerah beton yang basah (terkena sumber air) seperti water ground tank, dapat dilakukan dengan menggunakan material yang berkualitas dan tahan air seperti TamPur 100, TamPur 130, TamPur 136, Normet TamPur series memiliki keunggulan waktu settling yang cepat hingga friendly environment sehingga aman untuk lingkungan sekitar. 1 This design excel sheet will help you to design a water tank. design excel sheet is here below Attachments Design Of Water KB Views 1,639 2 Dear Engineer, If you add reinforcement it will be more usefull. what about axial tension and compression?.The worksheet is silent about this. 3 My Rectangular tank capacity is it is constructed on the ground
CompressPDF: Quick and easy reduce the size of your PDF online.
DescriptionAbstract Document Details Table of Contents Errata Info Return/Exchange Policy Notes/Preview Description This guide presents recommendations for materials, analysis, design, and construction of concrete-pedestal elevated water storage tanks, including all-concrete and composite tanks. Composite tanks consist of a steel water storage vessel supported on a cylindrical reinforced concrete elevated water storage tanks are structures that present special problems not encountered in typical environmental engineering concrete structures. This guide refers to ACI 350 for design and construction of those components of the pedestal tank in contact with the stored water, and to ACI 318 for design and construction of components not in contact with the stored water. Determination of snow, wind, and seismic loads based on ASCE/SEI 7 is included. These loads conform to the requirements of national building codes that use ASCE/SEI 7 as the basis for environmental loads as well as those of local building codes. Special requirements, based on successful experience, for the unique aspects of loads, analysis, design, and construction of concrete-pedestal tanks are composite tanks; concrete-pedestal tanks; earthquake-resistant structures; elevated water tanks; formwork construction. Document Details Author ACI Committee 371 Publication Year 2016 Pages 41 ISBN 9781945487002 Categories Tanks Formats PDF or Kindle Table of Contents CHAPTER 1— tank photosCHAPTER 2—NOTATION AND 3— common to both composite and concrete tank specific to composite specific to concrete tanksCHAPTER 4— recommendations common to both composite and concrete tank recommendations common to both composite and concrete tank of components common to both composite and concrete tank of components specific to composite of components specific to all-concrete tanksCHAPTER 5— common to both composite and concrete tank specific to composite specific to concrete tanksCHAPTER 6—GEOTECHNICAL considerationsCHAPTER 7—APPURTENANCES AND devices for steel floors within and lightingCHAPTER 8—REFERENCESAuthored referencesAPPENDIX A—GUIDE design wind steel concrete tank approximate period of vibration vertical load capacity derivation ERRATA INFO Any applicable errata are included with individual documents at the time of purchase. Errata are not included for collections or sets of documents such as the ACI Collection. For a listing of and access to all product errata, visit the Errata page. Return/Exchange Policy Printed / Hard Copy Products The full and complete returned product will be accepted if returned within 60 days of receipt and in salable condition. A 20% service charge applies. Return shipping fees are the customer’s responsibility. Electronic /Downloaded Products & Online Learning Courses These items are not eligible for return. Subscriptions These items are not eligible for return. Exchanges Contact ACI’s Customer Services Department for options + – ACICustomerService Sistemplumbing adalah bagian yang tidak dapat dipisahkan dari bangunan gedung, oleh karena itu perencanaan sistem plambing haruslah dilakukan bersamaan dan sesuai dengan tahapan-tahapan perencanaan gedung itu sendiri, dalam rangka penyediaan air bersih baik dari kualitas dan kuantitas serta kontinuitas maupun penyaluran air bekas pakai atau air kotor dari peralatan saniter ke tempat yang
Friday, April 2, 2021 Konstruksi Ground tank merupakan tangki yang berfungsi sebagai bak penampungan air bersih atau PAM yang dibangun atau diletakkan di bawah permukaan tanah. Ground tank ini dapat digunakan pada kawasan perumahan, ruko atau pertokoan, perkantoran, dan bangunan gedung lainnya .Ground tank biasanya terbuat dari material pelat beton bertulang yang dilapisi waterproofing non-toxic tidak beracun. Dalam pemasangannya, kemudian ground tank dilapisi dengan pasangan keramik berwarna putih pada lantai maupun dindingnya sehingga menjaga air di dalam tangki tetap itu, terdapat juga ground tank yang terbuat dari bahan fiberglass sehingga mempunyai struktur body yang sangat kuat dan kokoh. Pemasangannya pun cukup mudah, cepat, dan dan Kekurangan Ground TankGround tank merupakan salah satu cara modern untuk menampung air. Salah satu keunggulan dari ground tank ini adalah kapasitasnya yang besar. Cukup banyak ground tank yang terbuat dari fiberglass maupun beton di pasaran. Bahkan, kamu dapat membelinya secara online di kelebihan ground tank jika dibandingkan dengan bak penampung air lainnya adalahSangat ideal untuk wilayah perkotaan, khususnya mereka yang ingin menghemat dari aksi pencurian maupun dari kerusakan akibat cuaca yang mempertahankan lebih banyak space ruang real estate property yang kamu miliki. Sehingga kamu dapat menggunakan ruang tersebut untuk sejumlah tujuan berguna seperti taman, halaman rumput, jalan, dan tank terisolasi dari panas dan dingin sehingga suhu yang ada di dalamnya tetap mengurangi nilai estetika bangunan. Karena dalam beberapa kasus, pemilik properti membangun struktur modular di atas tangki bawah tanah sehingga tidak ada yang tahu bahwa di bawahnya terdapat ground itu kekurangan dari ground tank adalah sebagai berikutBiaya lebih mahal karena memerlukan pengeluaran dana untuk dinding beton pelindung untuk memperkuat tangki. Selain itu, diperlukan sistem pemompaan. Setelah instalasi selesai, kamu perlu mengisi kembali ruang dan mengaspal / meratakan beberapa area di maintenance lebih ekstra. Seperti timbulnya retakan, kebocorab, tersumbat dan jenis kerusakan lainnya yang sulit untuk ditemukan setelah ground tank dipasang. Beberapa jenis tanah tidak cocok untuk dipasangi ground tank seperti misalnya tanah Pembangunan Ground TankBerdasarkan SNI-03-7065-2005, tata cara perencanaan sistem plumbing dan ground tank harus direncanakan sesuai dengan prosedur sebagai berikut Ground tank bukan merupakan bagian dari konstruksi bangunan. Apabila diletakkan di luar bangunan, tangki harus kedap dan tahan terhadap beban yang tank harus diletakkan berjauhan dengan tangki pembuangan. Hal ini bertujuan agar tidak terjadi peresapan air kotor ke dalam bagian dalam ground ruang atau area bebas di sekeliling ground tank untuk lalu lintas pekerja melakukan pemeriksaan dan perawatan, masing-masing dari setiap sisi sebelah atas dan bawah minimal 60 perawatan berdiameter minimal 60 cm, dengan tutup lubang harus berada kira-kira 10 cm lebih tinggi dari permukaan pelat tutup ground tank dan mempunyai kemiringan yang keluar dari ground tank dipasang minimal 20 cm di atas dasar tank dan penempatan lubang pengisian dan pengeluaran airnya harus dibangun sedemikian rupa sehingga dapat mencegah air yang terlalu lama diam dalam tangki.
GRCadalah singkatan dari Glassfibre Reinforced Cement, dimana pengertiannya adalah sebuah produk precast / pracetak dari beton yang di-mixed dengan serat fiberglass.Keuntungan produk GRC adalah lebih ringan di banding dengan produk beton pracetak pada umumnya dan bisa dibuat lebih tipis sebagai papan GRC / GRC board atau panel GRC. Selain itu produk GRC lebih tahan dalam menghadapi terpaan
Dari Perhitungan di atas, diperoleh volume yang harus ditampung ground reservoir di mana diambil volume yang terbesar m 3 jam jam 6 pagi + m 3 jam jam 8 malam = m 3 ≈ 390 m 3 Kapasitas Ground Reservoir Kecamatan Gunem Volume yang dibutuhkan 390 m 3 Direncanakan tinggi ground reservoir 3 m dan lantai dasar ground reservoir persegi P = L Maka dimensi ground reservoir yang lain V = P x L x t 390 m 3 = P x L x 3 m P x L = 130 m 2 P = 13 L = 10 m Jadi dimensi reservoir P = 13 m ; L = 10 m ; t = 3,5 m. 0,5 Freeboard. c. Rencana Desain Bangunan Ground Reservoir 1. Panjang bangunan = 13 m Lebar bangunan = 10 m Tinggi MA dari dasar = 3 m Tinggi jagaan = m Tinggi total bangunan = m 2. Tebal dinding beton = m 3. Tebal lantai beton = m 4. Plat atap beton = m 5. Mutu beton fc = 25 Mpa Mutu baja fy = 400 Mpa 6. Perhitungan struktur menggunakan program SAP dengan acuan buku ”Dasar – dasar Perencanaan Beton Bertulang ” dan ” Grafik dan Tabel Perhitungan Beton Bertulang ” berdasarkan SKSNI T 15 – 1991 – 03. d. Perhitungan Struktur Ground Reservoir Ground Reservoir direncanakan menggunakan struktur beton bertulang. Sebelumnya perlu dilakukan perhitungan terhadap pembebanan ground reservoir . Perhitungan pembebanan ground reservoir sebagai berikut ini Perhitungan Pelat Dasar Tebal plat h = 25 cm = 250 mm Lebar b = 1000 mm Penutup beton p = 40 mm Diameter tulangan utama direncanakan = ø 10 mm Dimeter tulangan bagi direncanakan = ø 8 mm Tinggi efektif adalah Arah x d x = h – p – ½ øD = 250 – 40 – ½ 10 = 205 mm Arah y d y = h – ρ – øD - ½ øS = 250 – 40 – 10 - ½ 8 = 196 mm Dengan spesifikasi - Mutu beton fc = 25 Mpa - Mutu baja fy = 400 Mpa Maka digunakan - ρ min = - ρ max = Dari perhitungan SAP didapat Momen Tumpuan - x = Momen Lapangan - x = Gambar Momen M11 Plat Dasar Arah x Momen Tumpuan - y = -6 Momen Lapangan - y = Gambar Momen M22 Plat Dasar Arah y Momen Tumpuan arah – x 2 .d b Mu = 2 205 . . 1 4 . 6 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = x = x 1000 x x 10 6 = 369 mm 2 digunakan tulangan ф 10 – 200 As terpasang 393 mm 2 Momen Lapangan arah – x 2 .d b Mu = 2 205 . . 1 67 . = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = x = x 1000 x x 10 6 = 369 mm 2 digunakan tulangan ф 10 – 200 As terpasang 393 mm 2 Momen Tumpuan arah – y 2 .d b Mu = 2 196 . . 1 6 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = y = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 8 – 125 As terpasang 402 mm 2 Momen Lapangan arah - y 2 .d b Mu = 2 196 . . 1 5 . = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = y = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 8 – 125 As terpasang 402 mm 2 Perhitungan Atap Tebal plat h = 20 cm = 200 mm Lebar b = 1000 mm Penutup beton p = 40 mm Diameter tulangan utama direncanakan = ø 10 mm Diameter tulangan bagi direncanakan = ø 10 mm Tinggi efektif adalah Arah x d x = h – p – ½ ø D = 200 – 40 – ½ 10 = 155 mm Arah y d y = h – p – øD - ½ øS = 200 – 40 – 10 - ½ 8 = 146 mm Dengan spesifikasi - Mutu beton fc = 25 Mpa - Mutu baja fy = 400 Mpa Maka digunakan - ρ min = - ρ max = Dari perhitungan SAP didapat Momen Tumpuan - x = -36 Momen Lapangan - x = 23 Gambar Momen M22 Plat Atap Arah x Momen Tumpuan - y = Momen Lapangan - y = Gambar Momen M22 Plat Atap Arah y Momen Tumpuan arah – x 2 .d b Mu = 2 155 . . 1 36 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = x = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 10 – 75 As terpasang 1047 mm 2 Momen Lapangan arah – x 2 .d b Mu = 2 155 . . 1 23 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = x = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 10 – 150 As terpasang 524 mm 2 Momen Tumpuan arah – y 2 .d b Mu = 2 146 . . 1 5 . 31 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = y = x 1000 x x 10 6 = 730 mm 2 digunakan tulangan ф 8 – 50 As terpasang 1005 mm 2 Momen Lapangan arah - y 2 .d b Mu = 2 146 . . 1 2 . 14 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = y = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 8 – 150 As terpasang 335 mm 2 Perhitungan Dinding Tebal plat = 20 cm = 200 mm Penutup beton p = 40 mm Diameter tulangan utama direncanakan = ø 10 mm Dimeter tulangan bagi direncanakan = ø 8 mm Tinggi efektif adalah Arah x d x = h – p – ½ øD = 200 – 40 – ½ 10 = 155 mm Arah y d y = h – p – øD - ½ øS = 200 – 40 – 10 - ½ 8 = 146 mm Dengan spesifikasi - Mutu beton fc = 25 Mpa - Mutu baja fy = 400 Mpa Maka digunakan - ρ min = - ρ max = Dinding arah xz Dari perhitungan SAP didapat Momen Tumpuan - x = -7,5 Momen Lapangan - x = 5 Gambar Momen M22 Plat dinding arah x Pu Tumpuan - x = - 40 Pu Lapangan - x = 25 Gambar Gaya Aksial F22 Plat dinding arah x Momen Tumpuan arah – x e 1 = Pu Mu = 40 5 , 7 = m = 187,5 mm h e 1 = 1000 5 , 187 = 0,1875 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 40000 . 0,1875 = 0,0027 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,0020 ; β = 1,0 ρ = r . β = 0,0020 . 1,0 = 0,0020 Tulangan Utama As tot = ρ . = 0,0020 . 200 . 1000 = 400 mm 2 digunakan tulangan ф 10 – 175 As terpasang 449 mm 2 Momen Lapangan arah – x e 1 = Pu Mu = 25 5 = m = 200 mm h e 1 = 1000 200 = 0,2 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 5000 . 0,2 = 0,0004 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,00155 ; β = 1,0 ρ = r . β = 0,00155 . 1,0 = 0,00155 Tulangan Utama As tot = ρ . = 0,00155 . 200 . 1000 = 310 mm 2 digunakan tulangan ф 10 – 250 As terpasang 314 mm 2 Tulangan bagi diambil 20 .As Tumpuan = 20 . 400 mm 2 = 80 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Lapangan = 20 . 310 mm 2 = 62 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Dinding arah yz Dari perhitungan SAP didapat Momen Tumpuan - y = -19 Momen Lapangan - y = 3,8 Gambar Momen M22 plat dinding arah y Gaya Aksial Pu Tumpuan - y = -44 Gaya Aksial Pu lapangan - y = 27,5 Gambar Gaya Aksial F22 plat dinding arah y Momen Tumpuan arah – y e 1 = Pu Mu = 44 19 = 0,432m = 432 mm h e 1 = 1000 432 = 0,432 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 44000 . 0,432 = 0,00688 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,0025 ; β = 1,0 ρ = r . β = 0,0025 . 1,0 = 0,0025 Tulangan Utama As tot = ρ . b. h = 0,0025 . 200 . 1000 = 500 mm 2 digunakan tulangan ф 10 – 150 As terpasang 524 mm 2 Momen Lapangan arah - y e 1 = Pu Mu = 5 , 27 8 , 3 = 0,1382 m = 138,2 mm h e 1 = 1000 2 , 138 = 0,1382 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 40000 . 0,1382 = 0,0014 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,0017 ; β = 1,0 ρ = r . β = 0,0017 . 1 = 0,0017 Tulangan Utama As tot = ρ . = 0,0017 . 200 . 1000 = 340 mm 2 digunakan tulangan ф 10 – 225 As terpasang 349 mm 2 Tulangan bagi diambil 20 .As tumpuan = 20 . 500 mm 2 = 100 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Lapangan = 20 . 340 mm 2 = 68 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Tabel Rangkuman Penulangan Ground Reservoir Komponen Struktur Ukuran Penulangan - Pelat Atas Tebal 200 mm Tumpuan arah – x P10 - 75 Lapangan arah – x P10 - 150 Lapangan arah – y P8 - 50 Lapangan arah – y P8 - 150 - Pelat Dinding Tebal 200 mm Tumpuan arah – xz P10 -175 Lapangan arah – xz P10 - 250 Tulangan bagi – xz P8 - 250 Tumpuan arah – yz P10 -150 Lapangan arah – yz P10 - 225 Tulangan bagi – yz P8 – 250 - Pelat Dasar Tebal 250 mm Tumpuan arah – x P10 - 200 Lapangan arah – x P10 - 200 Lapangan arah – y P8 - 125 Lapangan arah – y P8 - 125 Sumber Hasil Perhitungan, 2008 Gambar Pemodelan Ground Reservoir pada program SAP PERENCANAAN TEKNIS PIPA TRANSMISI
. 326 350 319 33 328 469 75 458

perencanaan struktur ground water tank